\documentclass{beamer}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usetheme{UniKlu}
\title{An interesting topic name here}
\author{Author Name}
\institute{Department of Economics}
\begin{document}
\begin{frame}[noframenumbering,plain]
\titlepage
\end{frame}
\begin{frame}{Outline}
\tableofcontents
\end{frame}
\section{Introduction} % appears in footer
\begin{frame}{There Is No Largest Prime Number}
\begin{theorem}
There is no largest prime number.
\end{theorem}
\begin{enumerate}
\item Suppose $p$ were the largest prime number.
\item Let $q$ be the product of the first $p$ numbers.
\item Then $q+1$ is not divisible by any of them.
\item But $q + 1$ is greater than $1$, thus divisible by some prime
number not in the first $p$ numbers.
\end{enumerate}
\end{frame}
\section{Literature Review}
\begin{frame}{A longer title}
\begin{itemize}
\item one
\item two
\end{itemize}
\end{frame}
\end{document}